Interactional Competence across Proficiency Levels: How do Learners Manage Interaction in Paired Speaking Tests?

*EVELINA D. GALACZI
Cambridge English Language Assessment, Research and Validation Group
*E-mail: galaczi.e@cambridgeenglish.org

Paired speaking tasks are now commonly used in both pedagogic and assessment contexts, as they elicit a wide range of interactional skills. The current study aims to offer an investigation of the interaction co-constructed by learners at different proficiency levels who are engaged in a paired speaking test, and to provide insights into the conceptualization of interactional competence and key distinguishing interactional features across levels. The findings suggest that our understanding of interactional competence both in the classroom and as a construct underlying tests and assessment scales needs to broaden to include not just interactional features such as topic development organization, but also listener support strategies and turn-taking management. A more comprehensive understanding of interactional competence has the potential to complement available descriptions of interactional skills in assessment scales of speaking and aid learners and teachers in communicative classrooms.

INTRODUCTION

The ability to interact successfully in a foreign/second (L2) language has become increasingly important in a global world. The focus on interaction has challenged established notions of ‘communicative competence’ and ‘communicative language ability’ (Canale and Swain 1980; Bachman and Palmer 1996), suggesting that conceptualizations have to expand beyond a view of language competence as residing within an individual to a more social view where communicative language ability and the resulting performance reside within a social and jointly constructed context. Kramsch (1986)—the first to introduce the term ‘interactional competence’—has convincingly argued that communication is co-constructed by participants in communication, so responsibility for talk cannot be assigned to a single individual. Others have since supported this interactionist approach to interactional competence (IC) as a set of resources that reside not within an individual but are accomplished mutually and reciprocally by the participants in a discourse (e.g., Swain 2001; McNamara and Roever 2006). The importance of interactional competence has led to the more widespread use of paired and group tasks in classroom and
assessment contexts, as these formats have the potential to tap into a wide range of a learner’s interactional ability. With the more widespread use of paired and group tasks has come the need to more accurately understand and describe the features of the IC construct.

Specific aspects of the co-construction of interaction, such as the adjacency pair, topic organization, and turn-taking management, have been extensively investigated in non-test situations, starting with the work of Sacks et al. (1974). There is now also a growing area of research that has adopted a Conversation Analysis (CA) approach to the investigation of paired and group speaking tests and has provided useful insights about the co-construction of interaction between test takers (Lazaraton 2002; Galaczi 2008; Gan et al. 2009; Gan 2010; May 2009; Nakatsuhara 2009; Moore 2011). These investigations have contributed to the definition and conceptualization of interactional competence in test-taker discourse and have suggested that the IC construct needs to encompass concepts that go beyond general notions such as topic initiation and response to more fine-tuned and specific aspects of interactional competence, such as interactional means to develop topics across speakers and turns, topic shifts, listener involvement, and turn-taking strategies.

A complementary angle of research has been provided by a group of studies focusing on raters’ perspectives in evaluating IC in test-taker interactions. Relevant here is work by Ducasse and Brown (2009), who have demonstrated that raters who have to give an IC assessment use a range of considerations during their decision-making process, such as non-verbal communication; interactive listening, including backchannelling (e.g. ‘yeah’, ‘a ha’) and comprehension confirmation (e.g. ‘Exactly!’, ‘Yes, absolutely’); and interactional management between turns and across topics. In an earlier study Orr (2002) came to a similar conclusion, namely that the construct of IC in assessment scales is often narrower than what the raters themselves use in the assessment process.

Despite the strides made in better understanding the IC construct and the dynamics of interaction in learner test discourse, little empirical work has been carried out on IC within the context of varying proficiency levels. Exceptions are Galaczi (2004, 2008) and Ducasse (2009) in the context of paired speaking tests, and Gan (2010) in the group oral test context. Galaczi, for example, showed that the dimensions of mutuality, equality, and conversational dominance played an important role in distinguishing between higher and lower-ability test takers. Similarly, Gan’s research indicated that higher and lower-level learners differed in the level of mutuality they established in the discourse in a group oral test. Although these research endeavours have focused on learners at different proficiency levels, they have nevertheless used a restricted range of the language proficiency spectrum. More empirically based work is, therefore, needed on the interactional competence of learners at different proficiency levels addressing questions such as: What features of interactional competence in test-taker discourse are salient at different oral proficiency levels?
Which criterial IC features distinguish between adjacent proficiency levels? These are the questions that guide the present study, and they are addressed in the context of a paired speaking test. They will be explored with a mixed-method exploratory sequential design Creswell (2009), where a qualitative analysis of interactional features is supplemented with quantitative coding of the features of interest.

Within the assessment context, a systematic empirical investigation of these questions holds implications for test/scale development and rater training, as it contributes to a more accurate understanding of the paired test and the IC construct and the design of appropriate and meaningful assessment scales. Test takers are also learners, and a more precise delineation of IC is important for L2 teachers and learners, as it provides guidance for the development of interactional skills in a communicative classroom. An investigation such as the present one could provide concrete descriptions of what learners at different proficiency levels can do interactionally and aid teachers in the development of interactional skills. As Gan et al. (2009) note, analysis of the interactional organization of speaking test discourse could provide interactional ‘can do’ statements acting as learning targets for interactional competence.

The CEFR and interaction

The Common European Framework for Reference (CEFR; Council of Europe 2001) advocates that in addition to reading, writing, and listening, learners need to be successful in developing both spoken production and interaction. Its Interaction (2001: 28–29) and Turn-taking scales (2001: 86) provide guidance about the interactional competence of learners from Basic A1 level to the Mastery C2 level. The CEFR has proven to be a valuable resource for practitioners in Europe and beyond, but in the process its limitations have also become apparent. One of the main points of critique has been the CEFR’s generic nature, seen especially in the descriptors it provides in its illustrative scales. In the context of interactional competence, the CEFR draws attention to concepts such as ‘initiating, maintaining, and closing conversations’, ‘taking turns’, ‘confirming comprehension’, ‘inviting others in’, ‘keeping the floor’, and ‘relating contributions to those of other speakers’ (2001: 29). These concepts are undoubtedly at the heart of the IC construct, but they nevertheless need further differentiation between proficiency levels to be usable by relevant stakeholders. For example, the CEFR Interaction scale states that at B1 learners can ‘initiate, maintain, and close simple face-to-face conversations’, whereas at B2 they can ‘initiate discourse, take his/her turn when appropriate and end conversation when he/she needs to’ (2001: 29). The differentiation between these two sets of descriptors is quite vague. At C1, the Interaction scale tells us that a learner develops the ability to relate contributions to the joint discourse, but no descriptors are given about how learners at the B levels accomplish this fundamental interactional skill. A study such as the present one, which aims to
provide specific and empirically based descriptions of learner interactional profiles, can serve as a useful complement to the more generic CEFR (and to available taxonomies of language functions which include an interactional component, such as the one provided by O’Sullivan et al. 2002).

In its goal to provide descriptions of interactional behaviour at different proficiency levels, and to identify key distinguishing features across levels, the present study joins a body of research that is part of the English Profile (EP) programme (see www.englishprofile.org). The EP programme is an interdisciplinary research endeavour that aims to answer the question, ‘How does learner English differ across proficiency levels?’ This is certainly not a new question. The contribution of the EP Programme is its corpus-based approach to investigating this age-old question and to seeking to identify ‘criterial features’, that is, distinguishing features across levels. The EP research programme has already generated a set of comprehensive findings (Capel 2010; Green 2012; Hawkins and Filipovic 2012), which have predominantly focused on written learner performances. Investigations of spoken learner performances have been few, largely due to the often prohibitive demands of compiling a spoken corpus. McCarthy (2010), in a rare example of a corpus-based investigation of spoken learner language within the EP research agenda, has focused on spoken fluency and turn openings and turn closings in learner speech. The present study, with its mixed-method approach, aims to provide a complement to such quantitative investigations.

THE CONTEXT OF THE STUDY

The study used data from Cambridge English speaking tests. The tests in question have a paired format, where two test takers engage in multiple tasks with an examiner/interviewer (and are further assessed by an examiner/observer). The tests include question–answer interview tasks, individual extended turns, candidate/candidate and candidate/candidate/interviewer interaction tasks. The opportunities for learners to co-construct interaction without the control of an examiner made this test format suitable for the present investigation.

The focus in this study is on the candidate/candidate interaction task, which typically asks the test takers to exchange opinions about a specific situation or topic and provides opportunities for them to manage the interaction on their own. The task is accompanied by a visual that provides ideas for the test takers (an example is given in Appendix 1; see online supplementary material for Appendix 1). The assessment scales used by the two examiners focus on Global Achievement, Grammar and Vocabulary, Discourse Management, Pronunciation, and Interactive Communication. Of direct relevance to this study is the Interactive Communication scale, which was developed with guidance from the CEFR (Galaczi et al. 2011). The present study could provide insights to support future revisions of this scale and rater training.
METHOD

Study participants

Test-taker performances on the candidate/candidate interaction task at CEFR levels B1 to C2 were used in this study. A1 performances (i.e., the lowest level) were not included, as the exams of interest here do not extend down to A1. At A2 the candidate/candidate interaction task includes a great deal of scaffolding and examiner control. Although this is in line with the limited interactional abilities of A2 learners, such a task provides few opportunities for the test takers to manage the interaction and has limited relevance for the primary focus of this study.

The sample was selected from a pool of 84 video-taped test performances that were used for examiner training and standardization in 2010 and 2011. Only ‘average’ pairs for the respective level were selected. The notion of ‘average’ was defined as candidates who had marks in the 3–4 band range (from a 1–5 band scale) on the Cambridge English Interactive Communication scale. This selection process ensured that the analysis focused on clearly distinct pairs who represent the middle of the proficiency level. Borderline test takers with marks at the top or bottom of the scale would have shown some interactional features typical of the adjacent proficiency levels and were deemed unsuitable for the analysis.

The selection process resulted in 41 ‘average’ pairs (12 at B1, 12 at B2, 10 at C1, and 7 at C2). The test takers displayed a range of L1s, age, and gender. Investigations into the ‘interlocutor effect’ (O’Sullivan 2002) have indicated that interlocutor background variables could play a role in speaking tests. It was felt important, therefore, to ensure that the participants in the study displayed a range of L1s, ages, and gender to limit any potential interlocutor effects associated with specific background characteristics.

Data transcription

Conversation Analysis transcriptions were made of the interaction generated by the selected pairs. The choice of CA transcription conventions (following Atkinson and Heritage 1984, see Appendix 2; see online supplementary material for Appendix 2) allowed the investigation of micro-level interactional features.

Data analysis

The ‘data exploration strategy’ proposed by ten Have (1999) was used for the CA part of the study. It involved a process of systematically working through transcribed data in cycles and focusing on CA concepts such as turn-taking, sequences, and repair. The analytical tools proposed by Pomerantz and Fehr (1997:71–74) were used to make the data exploration systematic and comprehensive. Briefly, they involved the following steps: selecting a sequence; characterizing the actions in the sequence (e.g. types of topic development...
moves, types of listener support, etc.); considering the form of the speakers’ actions (e.g. statement vs. question) and the taking of turns (e.g. after a gap or an overlap); considering how the ways the actions were accomplished implicated certain relationships for the speakers. (For a detailed discussion of the methodological steps, see Galaczi 2004).

One of the fundamental CA premises holds that analysis should not be driven by prior theoretical assumptions but should provide descriptions of conversational organization through taking an *emic*, that is, insider’s, perspective (Hutchby and Wooffitt 1998). In the present case, even though the analysis focused on categories that past research had highlighted as interactionally important, such as topic development, turn-taking management, or listener support, these were analytical features of interest, and not predetermined categories imposed on the data. The analytical features of interest were, therefore, known but conclusions about their use emerged from the data.

To address one of the main caveats often associated with qualitative analysis, namely the issue of generalizability and representation, the CA analysis was complemented with quantitative coding of the data. After the completion of the CA exploration of the data, NVivo 9 was used for the coding of the data into the following three categories: types of topic development moves, listener support, and turn-taking management. (See Appendix 3 for the coding scheme; see online supplementary material for Appendix 3.) The categories in the coding scheme were mutually exclusive and accounted for all the features in the interaction. In other words, when coding for topic development moves, every single interactional turn from the data was classified under one of the five types of topic development moves in the coding scheme; every turn was then classified under one of the three codes for turn-taking; finally, every turn was coded for one of the two types of listener support or for absence of listener support. The coding scheme, therefore, was exhaustive and proved to be a useful instrument for coding interaction, as it was based on *a priori* theoretical concepts, which were confirmed to perform well in capturing empirical data. The coding was carried out by the researcher only, which can be considered a limitation of the study. The triangulation of quantitative and qualitative data and analysis is an attempt to minimize this limitation.

When coding was complete, frequencies of occurrence of raw numbers were calculated for types of topic development moves, turn-taking strategies, and listener support moves for each participant and for the proficiency level as a whole. The proportion of each type of interactional move as a percentage of the total number of interactional moves for that category was then calculated. For each participant, this resulted in percentages of types of topic development moves within all the topic development moves, types of turn-taking strategies within all the turn-taking strategies, and types of listener support as a proportion of all the listener support moves. Owing to the relatively large variation in the data, means and medians were generated as descriptive statistics. From a statistical perspective, the relatively large amount of variation in the data can be considered a limitation of the study. This is seen as an inevitable trade-off of
using interactional data, which shows variability, and a relatively small data set, which is suited to the qualitative analysis carried out here. It is hoped that future interactional studies of learner speech would supplement these findings and contribute to stronger statistical support of the findings.

Before moving on, a brief note on the issue of quantification in CA studies is in order. Some researchers have argued against quantification in CA largely due to the reductionist nature of coding schemes, which limit the phenomena being analysed to a finite set of features (Psathas 1995). The argument is that a coding system, no matter how detailed and reliable, cannot capture the complexity of interaction. The view expressed in this article, following Stivers (2001), is that while quantification should not be treated as a substitute for an in-depth qualitative interactional analysis, it has a potentially useful role as an auxiliary tool in ‘applied CA’ research (ten Have 1999:162), as it can provide support for purely interpretation-based qualitative findings.

FINDINGS

The first section of the Findings will present typical interactional profiles of test takers at the four levels under investigation, based on the qualitative CA findings. The quantitative coding findings will be then be discussed in conjunction with the qualitative findings.

The CA indicated that a host of interactional features play a role in distinguishing between proficiency levels. The learners representing the four proficiency levels of interest here were all engaging in the three key interactional features of interest (topic development, listener support, and turn-taking management), but the interactional moves they used to accomplish those three interactional goals differed in frequency and type. The most salient features that showed differences across proficiency levels were:

- Topic development organization and specifically:
 - degree of topic development
 - topic extensions of ‘own’ vs. ‘other’ topics
- Listener support moves:
 - backchannelling (e.g. ‘yes’, ‘hm’)
 - confirmation of comprehension (e.g. ‘absolutely’, ‘exactly’)
- Turn-taking management:
 - in a no-gap-no-overlap manner
 - following an overlap/latch
 - following a gap/pause.

Evidence from Ducasse and Brown (2009), as well as anecdotal evidence from this study, has suggested that non-verbal features such as gaze and body
language are part of the IC construct. They were not captured in the transcripts in a systematic way, however, and will not be reported here.

The discussion will now move to a description of the interactional features given above, as they were found in the interactional repertoire of test takers at CEFR levels B1 to C2. The IC behaviour at each level will be illustrated with short excerpts from a typical pair at that level. Even though the excerpts only present a small part of the interactions from the data set, they were chosen because they were deemed representative of typical interactional features at each level. It is also worth noting that three of the four illustrative excerpts used here (at B1, B2, and C1) are used as official spoken exemplars of CEFR levels by the Council of Europe, which provides further support for their use in this article as typical examples of candidates at specific CEFR levels.

Interactional competence at B1

The interactional profile of B1 learners was found to be generally characterized by low mutuality between the speakers. A typical B1 interaction can be seen in Excerpt 1. It shows four turns from the opening exchange between Veronica and Melissa, who are discussing different things they could take to help them pass the time while queuing for concert tickets. The accompanying prompt includes ideas such as a mobile phone, food, books, a guitar.

In a break from the conventional way of presenting transcribed speech, the transcripts given here are aligned in a left and right pane, to illustrate more clearly individual contributions to the joint discourse. Newly initiated topics are underlined and in bold.

Excerpt 1

Veronica and Melissa (B1)

Prompt—Concert queue

<table>
<thead>
<tr>
<th>Veronica</th>
<th>Melissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yeah, and it’s good I think that ah for</td>
<td></td>
</tr>
<tr>
<td>our friends it’s important that ah they have</td>
<td></td>
</tr>
<tr>
<td>a: mobile phone, and maybe umbrella,</td>
<td></td>
</tr>
<tr>
<td>because maybe raining, ah:hm: (:) of</td>
<td></td>
</tr>
<tr>
<td>course a guitar, because has important</td>
<td></td>
</tr>
<tr>
<td>concert.</td>
<td></td>
</tr>
<tr>
<td>(0.5)</td>
<td></td>
</tr>
<tr>
<td>2 Hm, yeah, if you don’t be:. worry, ah</td>
<td></td>
</tr>
<tr>
<td>(.) worry, in in the:. in with the</td>
<td></td>
</tr>
<tr>
<td>people, you can use your walkman and listen</td>
<td></td>
</tr>
<tr>
<td>the: music that you prefer (.) or play in</td>
<td></td>
</tr>
<tr>
<td>a little Nintendo.</td>
<td></td>
</tr>
<tr>
<td>(0.5)</td>
<td></td>
</tr>
</tbody>
</table>
The most salient topic development characteristic of the above exchange is the short-lived topics: in the space of four turns the speakers engage in five topical sequences that include minimal cross-speaker topic development and mostly consist of development of self-initiated topics. Links with prior turns are present in turns 2, 3, and 4, but are minimal (e.g., ‘yeah’ or ‘yes, sure’). The use of such tokens as a turn-opening device is widely used in interaction, as has been shown both in small-scale CA studies (Jefferson 1993) and large-scale corpus-informed investigations (Tao 2003). Such devices acknowledge the previous turn, provide linkage with what has been said, and serve as a mechanism for developing mutuality between speakers. The speakers in Excerpt 1 use two of the most frequent turn-openers: ‘yeah’ and ‘yes’ (Tao 2003), but beyond that do not work towards developing mutuality, as they do not proceed to develop the proposition from the previous turn.

The most important topic development move from the point of view of co-construction is the topic extension move, as it shows the highest degree of ‘substantive recipiency’ (Waring 2002). The topic extension move is critical in the context of an L2 speaking test because it provides evidence that the test taker/learner has sufficient English language ability to understand what his/her interlocutor has said and to extend the topic further. Topic extensions are, as such, both a speaker-based and a listener-based strategy (Waring 2002). At B1 the speaker-based role seems to take the upper hand and predominate, as seen in the high ratio of extensions of self-initiated topics and low ratio of extensions of other-initiated topics. This is also seen in another distinguishing B1 interactional feature: the rare instances of listener support. While Excerpt 1 shows no instances of listener support, softly spoken backchannels were occasion-ally found in other B1 transcripts, indicating that at B1 learners have dif-ficulty keeping both the speaker and listener role active concurrently. This is possibly due to the high cognitive demands on the interactional partners, who have to both decode their partner’s speech and compose their own contributions. These demands are especially challenging in the context of dyadic speech, which, as Field (2011) has shown, imposes even greater cognitive difficulties on speakers/listeners than monologic speech.

A further function of the listener in conversation is that he/she has to fore-cast the remainder of the speaker’s message and anticipate a ‘transition relevance place’ (Sacks et al. 1974), which would provide a point of legitimate speaker change. Often such speaker change happens with a latch/overlap or in a no-gap-no-overlap manner. We see limited illustration of such interactional behaviour in Excerpt 1: the 0.5-second gaps between turns 1–2 and 2–3 in Excerpt 1 are indicative of weak alignment between speakers, and probably a result of the longer processing time learners at this level need to decode what
has been said in the previous turn and to construct their own response. Gaps between turns have been observed in previous research on low-level paired and group tests (Galaczi 2008; Gan 2010).

The presence of abrupt topic shifts is another B1 distinguishing interactional feature observed in Excerpt 1. Such ‘disjunctive’ topic shifts (Jefferson 1984), where the topic change involves the introduction of markedly different propositions to what was discussed in the prior turn, are infrequent in everyday conversations. Instead, conversationalists tend to relate each turn topically to the prior one as they link new propositions to previous ones in a ‘stepwise’ fashion (Sacks 1992). The topic shifts in Excerpt 1 do contain links with the previous turn, but those links are minimal, signalling de facto disjunctive topic changes. It could be argued that such disjunctive topic changes are a result of the nature of the test task, as test takers may feel under pressure to cover all visuals included in a task. That may be so to an extent; however, as we shall see later at the higher levels, where the same range of visuals is given, test-takers link one topic (i.e. visual) to another in a more stepwise fashion. Abrupt topic shifts, therefore, seem to be a characteristic feature of B1.

Interactional competence at B2

Test takers at this level were found to display higher mutuality and more collaborative features were observed in their repertoire. B2-level learners showed a capability to develop other-initiated topics more regularly than their B1 counterparts. They were also able to provide more listener support, usually in the form of backchannelling. Speaker change was usually accomplished in a no gap-no overlap manner, with more instances of overlaps or latches than at B1 and fewer pauses between turns.

An illustration of a typical B2 interactional profile can be seen in Excerpt 2, which gives the opening exchange between Rino and Gabriela. The two learners are exchanging ideas on what makes living in a city enjoyable. The accompanying visual includes ideas such as a park, disco, market, and sports facilities.

Excerpt 2

<table>
<thead>
<tr>
<th>Rino and Gabriella (B2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt: Things that make living in a city enjoyable</td>
</tr>
</tbody>
</table>

- Well, (.) I think that (0.5) **a park** is essential, (.) you know, maybe: (0.5) in summer days, when you’re (1) getting bored stay at home, (0.5) hot, and you just go (0.5) to a park, enjoy yourself with your family (.) and friends. What do you think about this, [Rino?]
Rino

[Yeah], also the big cities has a lot of parks. They are very nice (0.5) and you see there some birds (0.5) and other people (0.5) who are walking through the park and relaxing. (...) And here you can see, I think it’s a: football (0.5)

Yeah (0.5) Yeah, it’s very big. (...) ahm at the weekends there are a lot of (...) matches there, to enjoy it, to watch it, (...) and to support the team.

Yeah.

And um (0.5) there are lots of (1) coffee bar here. (1) This is more for the old people who wants a seat, (0.5) and (0.5) relax (.) reading their newspaper and (0.5) chatting with friends. (0.5) This is very good, too.

Yeah, but there are also young people=

Who are talking to each other=

=But they look a little bored here, (.) in the picture, don’t you think?

Yeah, they like to prefer to go to a disco

Gabriela

Yeah

hm

yeah

%yeah%

Yeah. %Yeah%. Sports are essential.

And um (0.5) there are lots of (1) coffee bar here. (1) This is more for the old people who wants a seat, (0.5) and (0.5) relax (.) reading their newspaper and (0.5) chatting with friends. (0.5) This is very good, too.

Yeah, there are also young people=

But they look a little bored here, (.) in the picture, don’t you think?

Excerpt 2 shows two interlocutors who develop three topics in the stretch of 12 turns, and their topic development strategies display collaborative features and mutuality. For example, in turn 1 Gabriela initiates the topic ‘parks’, which is extended by her partner in turn 2. The same is seen with the two subsequent topics (‘football stadium’ and ‘coffee bars’), which extend over several turns and provide examples of a ‘jointly-constructed turn’ (Coates 1994) in turns 2–4. This style of interactional behaviour has been observed in past research on higher-ability learners (Galaczi 2008; Gan et al. 2009). Another display of alignment and mutuality is the use of syntactic elements to link turns. Tao and McCarthy (2001) have shown that speakers co-create structures such as a main clause and subordinate clause, and instances of this can be seen here: Gabriela notes that ‘yeah there are also young people’ (turn
9) and Rino completes that syntactic construction with ‘who are talking to each other’ (turn 10).

The mutuality which Rino and Gabriela establish in their interaction is nevertheless floundering at times, as seen in frequent pauses mid-turn. Turn 1 contains several instances of pauses within the turn, potentially providing transition-relevant places. Rino’s avoidance of the speaker role makes Gabriela use a question to invite his contribution (‘What do you think about this, Rino?’). She uses a further question in turn 11 (‘don’t you think?’). Questions perform two basic functions in interaction: they select the next topic and the next speaker. Gabriela’s question, therefore, is both a controlling move which manages the distribution of turn-taking and puts Rino on the spot, and also a collaborative move which invites joint topic development. Two main types of questions were observed in the data: questions which initiate a new topic and questions which help extend a topic under development. The first type of question creates the lowest level of mutuality, as it simply passes speakership before any substantive topic development has taken place. We see the second type of question in Excerpt 2: Gabriela has done substantive topic development work in turns 1 and 11, and is now inviting her partner to further extend. The questions here function as topic extension moves which contribute to the level of mutuality in the talk. The use of such questions was relatively rare at the lower B1 level, but was seen more frequently at B2, signalling the ability of B2 learners to do some substantive topic development themselves and to create mutuality through inviting the other person to contribute to the topic under discussion.

In terms of listener engagement, B2 learners’ better developed linguistic resources and automaticity in processing allow them to be both focused on constructing their own response and decoding their partner’s contributions. B2 test takers were found to be more adept at keeping active the roles of speaker and listener at the same time (as seen, for example, in the backchannelling during turn 2). The active listener role is, however, still relatively weak and shown primarily through the use of backchannels, which can on occasion mask comprehension.

Interactional competence at C1

The level of mutuality and reciprocity at this level was observed to be higher than at B2. Learners at C1 showed confidence in developing both self-initiated and other-initiated topics, with substantive topic expansions and multi-turn topics. They provided listener support both through backchannelling and confirmations of comprehension. In addition to the no-gap-no-overlap manner of speaker change, they also oriented to latched or overlapped turns, giving a flow to their interaction, and creating ‘confluence’ (McCarthy 2010).
An example illustrative of the interactional behaviour at C1 can be seen in Excerpt 3, in which Christian and Laurent are discussing different ways in which people use the world around them. Their visual contains ideas such as cutting down forests, deserted beaches, and mudslides.

Excerpt 3

_Christian and Laurent (C1)

Prompt: Different ways in which we use the world around us

<table>
<thead>
<tr>
<th>Christian</th>
<th>Laurent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: h, what about the mountains?</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

Ahm, I think this is showing like the: ah affection of like tourist in like a beautiful area, like for example, this would have been a beach in like (0.5) I don’t know, for example Hawaii an it’s like (0.5) before humanity started to co- come there it’s like (0.5) maybe: very peaceful and like sea and now you can see there’s a lot of (. .) hotel:ls [a:nd]

[Yeah, exactly]

The environment in general, I mean=

= cars are starting to come and like ex- haust fumes and stuff like that=

yeah

[Yeah], I think it’s like, (0.5) I’m not sure but there’s like a specific word for this, that the trees and there’s like a mudstream: and, it’s,

(1)

[And] and maybe it could be also (0.5) be a problem for (0.5) ahm (0.5) for the water and, and, how can I [say, ahm] not only water but

[General]

=Yes, indeed=

=Yes, and everything in, in, (0.5) maybe it was a wood before or something like that. (1) they had to ahm burn down ahm (0.5) and where are ah the animals who lived there in the past. (0.5) It’s also the same with the last picture, [isn’t it?]

Yeah, I think it’s like, (0.5) I’m not sure, do you know?

=Yes, It’s because they cut the trees down and then ah it’s like hm yes=

[Yes, indeed]

Exactly, when it starts to rain, [there’s like] a mudstream, uh, hm, I don’t know

In this excerpt, we see many illustrations of the speakers’ joint responsibility in maintaining the interaction. For example, the topical sequences ‘mountain tourism’ and ‘mudslides’ are each developed over 6 turns (turns 1–7 and 7–12). As noted earlier, topic extension moves of other-initiated topics are critical in L2 test interaction, as they signal a speaker who is orienting to an
active role in the development of topics and provide evidence of linguistic proficiency. The relative ease with which Christian and Laurent switch between the roles of speaker and listener illustrates a key feature of C1 interaction. Their turn openings provide links with the preceding turn and then proceed to further develop the topic established in the previous turn through topic extension moves. Similar to their B2 counterparts, they use syntactic links across turns, where a main clause and subordinate clause are constructed across turns (e.g. turns 3 and 4). They also create mutuality through questions which invite co-construction: ‘It’s also the same with the last picture, isn’t it?’ in turn 7, and ‘I’m not sure, do you know?’ in turn 10.

The topic shifts at this level are less abrupt than what was observed at B1 and B2, as seen in the way the speakers connect their contributions with what had previously been said. Such topic development is reminiscent of ‘stepwise’ topic development (Sacks 1992), and has been reported in high-ability learner speech (Gan 2010). For example, the topical sequence ‘mountains’ is introduced by Laurent in turn 1 with a topic opening move. Christian uses several topic extension moves in turn 2, and the topic then passes back and forth between the speakers, each extending it further (turns 3–7). The fluidity between topical sequences is also seen in the use of anaphoric and cataphoric reference (e.g. ‘It’s also the same with the last picture, isn’t it?’ in turn 7). Such cohesive links contribute to the interactional flow, as they link newly initiated topics with previously discussed ones. This collaborative interactional style is reminiscent of interaction at B2, but such displays of mutuality and co-construction were more consistently displayed at C1.

Christian and Laurent’s turn-taking management is also more akin to natural non-test talk, as seen in the frequent speaker changes and overlaps/latches as turn-taking devices (reminiscent of Tannen’s 1981 ‘cooperative overlapping’). The speakers are quite skilful in inviting participation in their turn closings through the use of elongated sounds (e.g. turns 2 and 8), filled pauses (turn 11), and questions, which are readily taken up by the other interlocutor. For example, in turn 3 Laurent signals trouble in the conversation with his appeal for help, ‘how can I say, ahm not only water but’, at which point his partner steps in with precision, in a no-gap-no-overlap manner to complete the sentence. In turn 6 Christian also uses a ‘vague language token’ (‘and stuff like that’), which, as reported in McCarthy (2010), invites the listener to take the floor and complete the proposition. In this case, Christian’s partner takes the floor with a latched turn and proceeds to extend the topic. [Laurent uses the same strategy in turn 7 (‘or something like that’) which in this instance, even though signalling turn end, does not get extended by his partner, who probably feels they have exhausted the topic.]

Christian and Laurent’s interaction also shows frequent use of listener support, evidence of their ability to keep both the speaker and listener role active and their efficiency in both decoding what the other person is saying and reacting to it while constructing their own response. Listeners need to show comprehension, not only through backchannels, but also through substantive
comments and responses. It is worth remembering Ducasse and Brown’s (2009) distinction between backchannelling and confirmations of comprehension. The former can be used even when no comprehension has occurred, whereas the latter is evidence of the ability of the listener to monitor what is being said. At C1, in contrast to the levels below, learners use more confirmations of comprehension (e.g. ‘yeah, exactly’ in turn 3, ‘yes, indeed’ in turns 5 and 12, ‘Oh yes, I see’ in turn 9, ‘exactly’ in turn 12), thus providing evidence that they are actively monitoring the content of their partner’s talk. Such tokens not only provide evidence of comprehension, but also contribute to the mutuality of the interaction.

Interactional competence at C2

Similar to C1, at this level, learners clearly displayed the ability to develop interactions in a mutual fashion and extend both self-initiated and other-initiated topics over several turns. Learners at C2 showed interactional engagement through rapid speaker changes and supportive overlaps and latches.

A typical C2 interaction can be seen in Excerpt 4, which gives part of the exchange between Sabine and Jelmer who are discussing different pictures which could be used in a class project on dressing up. In addition, they have been asked to suggest another idea not included in the visuals.

Excerpt 4

Sabine and Jelmer (C2)

Prompt—Class project: Dressing up

Sabine

1. Another picture, I was thinking about (.) **the carnival**, in uh, (0.5) South America, or something. Cause I always enjoy er, (.) looking at these pictures, and they’re so colourful, and all the people wearing hats, and [masks and uhh,]

2. it’s amazing, yeah.

3. OK

Jelmer

4. yeah

5. yeah [It’s absolutely huge.]

6. yeah

7. For people in the United States, I think, (.) it’s the biggest there=

8. =kids love it=

9. true (0.5) yeah
This excerpt abounds in instances of mutuality in topic development, as seen in the extension of topical sequences across speakers and turns. For example, the topic ‘Halloween’ is developed over 13 turns (turns 4–16), with frequent speaker changes, short turns, and strong listener support. The excerpt shows features of ‘high involvement’ speech (Tannen 1981) and ‘interspeaker coordination’ (Hutchby and Wooffitt 1998), as seen in the use of overlapped and latched utterances and interactionally smooth and appropriate transitions between them.

The speakers’ high level of mutuality in topic development is also seen in the frequent instances of listener support and agreement, in terms of backchannels (turns 1, 4, 5, 6, 11, and 14), and the very involved comprehension confirmation tokens, as seen in ‘yeah right’ (turn 5), ‘true yeah’ (turns 9 and 13), ‘definitely’ (turn 10), ‘yeah, exactly’ (turn 12), and ‘exactly!’ (turn 16).

It also worth noting the two instances of a one-second pause (long in interactional terms) in turns 4 and 14. In both cases, the pause is an invitation for Sabine to take the floor and contribute to topic development. She does not. The two long pauses occur during the discussion of a cognitively challenging topic and provide some explanation why Sabine is breaking conversation rules: she is not sure what to contribute.

The interactional behaviour of learners at C2 was found to be similar to that observed at C1. An obvious question is whether it is different enough to be treated as a separate level of interactional ability. A subtle difference between these two levels does emerge, as captured in the CEFR descriptors: At C1, the CEFR tells us, learners ‘relate[e] contributions to those of other speakers’ (2001: 28), whereas at C2 they can ‘interweave[e] contributions into joint discourse’ (2001: 28). Even though not easily quantifiable, the idea of creating a joint
discourse is fundamental in distinguishing between C1 and C2. At C2 learners engage critically with each other’s contributions and develop a joint discourse, as opposed to supporting their partner by extending their partner’s topic. Even though this difference distinguishes between C1 and C2, it is indeed subtle and suggests that learners have developed the full range of their interactional repertoire by the time they reach C1 and few additional meaningful IC features appear at C2. An argument could be made, as such, that interactional competence is fully developed by C1.

QUANTITATIVE FINDINGS

In terms of topic development, we have so far seen that at B1 test takers extend predominantly self-initiated topics, and are relatively weak at contributing to the development of other-initiated topics. Such interactional orientations result in low mutuality and short topical sequences. At B2 the ability to develop topics in a mutual manner improves. Although test takers are still stronger at developing self-initiated topics, they can create multi-turn topics which link with the previous turn and extend the topical sequence across several turns. At C1 and C2 we have seen the learners’ ability to engage with their partner’s topic and extend topics over multiple turns.

The qualitative difference between the four proficiency levels can also be seen in Figure 1, which provides the mean percentage of types of topic development moves at the four levels of interest.

Figure 1 indicates that the proportion of topic initiation moves, extensions of self-initiated ‘own’ topics, and minimal topic extensions decreases as...
proficiency level increases, while extensions of ‘other’-initiated topics increase. As noted earlier, the most fundamental topic development move from an interactional perspective is the one which extends the topic from the previous turn, and we see this ability reflected in the data given in Figure 1, which shows that the highest-level learners engaged in the most topic extensions of ‘other’ topics.

If we focus on the distribution of topic development moves within the same proficiency level, at B1 test takers devoted 30.6 per cent of topic development to topic initiations, 28.5 per cent to extensions of their own topic, 21.0 per cent to minimal topic extensions, and the least time—19.9 per cent—to extensions of their partner’s topic. That balance starts to shift at B2, where the development of ‘other’ initiated topics takes more prominence (28.2 per cent). At the C levels, the development of ‘other’-initiated topics becomes the most frequent topic development move (38.2 per cent at C1 and 48.8 per cent at C2), reflecting the test takers’ stronger ability to co-construct interaction. It is also worth noting a dependency in the data, where the use of one interactional move excludes the use of another. So, if a speaker produces (in a defined length of time) a large proportion of moves that extend their own topic, they will produce a smaller proportion of moves extending other-initiated topics. Some moves are cognitively and linguistically more challenging than others and what the qualitative and quantitative analysis showed is that at the lower levels there is a higher proportion of moves which develop one’s own topics (i.e. interactionally, cognitively, and linguistically easier moves), at the expense of the more challenging development of other-initiated topics. As noted earlier, the limited linguistic resources of lower-level learners (up to B1) allow them to construct their own meaning, but do not give them much scope cognitively and linguistically to easily facilitate their partner’s meaning construction and to co-construct interaction.

In terms of listener support, the qualitative analysis indicated that at B1 test takers provided limited listener support. From B2 upwards, listener support was more prominent, but mostly in the form of backchannels. At C1 and C2 learners’ ability to act as supportive listeners through backchanneling and confirmations of comprehension was found to be more fully developed. The frequency of backchannels, which could be a camouflage strategy for lack of comprehension decreased at the C levels, while the more substantive confirmations of comprehension increased. Figure 2 provides quantitative support for this. In terms of the raw number of listener support moves per level, we see a pattern where the amount of listener support is extremely low at B1 (a total of 16 instances observed across all 12 B1 learners), but drastically rises from B2 upwards.

Figure 2 further indicates that the relative distribution of listener support moves is different across levels. B1 test takers not only provide little listener support, but when they do, it is mostly backchanneling (92.9 per cent). The ratio of backchannels and confirmations of comprehension changes as the level increases and at C2 we see the highest proportion of confirmations of
comprehension (34.1 per cent) and the lowest use of backchannels (65.9 per cent). In line with the dependency of interactional moves noted in the previous paragraph, again we see here that as backchannels (which show some listener involvement, but could also mask comprehension) decrease in use, more substantive confirmations of comprehension take on the role of signalling listener involvement.

Figure 2: Distribution of listener support moves. Note: The n counts indicate the total number of listener support moves observed at that proficiency level

Figure 3: Distribution of turn-taking strategies. Note: The n counts indicate the total number of turns observed at that proficiency level
Regarding *turn-taking management*, the ability to start a turn after a latch/overlap was found to increase with proficiency level and as learners became more efficient at simultaneously decoding their partner’s utterance, composing their contributions and projecting the end of the turn. Casual interaction consists mostly of turns that start in a no-gap-no-overlap manner or after a latch. In line with this basic feature of casual conversation and with the qualitative CA findings, as the proficiency level increased, the ability to start turns after a latch or overlap was found to be a more frequent part of the learner repertoire, as seen in Figure 3 (11.7 per cent at B1, gradually increasing to 28.6 per cent at C2), thus adding to the interactional flow. Inversely, the starting of turns after a pause decreased as proficiency increased (20.8 per cent at B1, compared with 12.2 per cent at C2). Starting turns in a no-gap-no-overlap manner also decreased slightly.

CONCLUSION

It is hoped that this study has contributed to the conceptualization of the IC construct and has provided useful descriptive interactional features that could complement existing IC scales and descriptors. The findings have indicated that learners’ interactional competence is a broad concept, which comprises not just within-turn and between-turn topic development as seen in initiating and responding, but also turn-taking management and active listening, and have provided support for the body of literature that has argued for a broader definition of interactional competence (Ducasse and Brown 2009; May 2009).

The development of IC observed in this study also holds insights about the role of interactional competence vis-à-vis general language ability. The interactions discussed here indicate that IC development goes hand in hand with the development of general language ability and that as learners become more efficient speakers and listeners through higher automaticity of cognitive processes such as decoding messages and composing spoken contributions (Field 2011), then working memory can be freed to allow them to engage more collaboratively in the interaction and to display successful IC strategies.

It is important to address the role of the tasks used at each level and their potential influence on the interactional patterns observed. The so-called ‘method effect’ has been widely documented in the literature (e.g. O’Sullivan et al. 2002). It could be argued, for example, that the more concrete and less abstract nature of the topics at B1 and B2 led to lower interactivity, whereas at the C1 and C2 levels the more abstract and cognitively challenging nature of the task prompt made the conversational partners engage more critically with each other’s ideas, leading to more engaged interaction. However, past research by the author (Galaczi 2008) on talk generated by pairs doing the same task has shown that both higher and lower interactional features were
observed in the learner speech, thus providing evidence for the relatively minimal effect of task.

Finally, the large variation in the data needs to be acknowledged and the need for more studies that combine qualitative discourse-analysis investigations with quantitative statistical support must be emphasized. In any future studies, it needs to be borne in mind that interactional data are not readily reduced to coding categories. The coding scheme used here presents a potential tool for future interactional studies, but any quantitative investigation would need to be accompanied by a thorough qualitative analysis of the discourse generated. It is in such a mixed-method approach that the most useful insights would emerge.

Conflict of interest statement. None declared.

NOTE

1 Both mean and median descriptive statistics were generated. Because the median values do not sum to 100 per cent, the mean values are used in Figures 1–3. In all cases, the median values supported the trends observed in the Figures. A previous version of this article has appeared in the 43rd BAAL 2010 conference proceedings.

SUPPLEMENTARY DATA

Supplementary material is available at Applied Linguistics online.

REFERENCES

NOTES ON CONTRIBUTOR

Evelina D. Galaczi is currently Principal Research and Validation Manager at Cambridge English Language Assessment, University of Cambridge. Her broad research interests include performance assessment, scale development, rater training, and mixed-method approaches to assessment research. Evelina has authored and co-authored works in *Language Assessment Quarterly*, *Assessment in Education*, and in the *Studies in Language Testing* series. She is a member of the *Language Assessment Quarterly* Editorial Advisory Board and a Coordinating Committee member of the BAAL Testing, Evaluation and Assessment Special Interest Group. *Address for correspondence:* Evelina D. Galaczi, Cambridge English Language Assessment, 1 Hills Road, Cambridge, CB1 2EU, United Kingdom. <galaczi.e@cambridgeenglish.org>